
1111111111111111111111111111
PB98-121965

Animation of Traffic through Roundabouts

By John Larson Ill
Bryan Pearce
Per Garder

"'i. Home\llork 8 - Your Name Here l!!l(iJE3

,,
'·•

'·
...

...

-·· .. - --

·.:. t ':
~------·!.,..,,

SetUpj Run

lnputData I

Allowable Gap in f2.
Seconds

Accelerations in g's IU4
Yield Point ro:o

r. Draw Segments

Show Output Data

Show Delay Data

r Single Step

Clear I c:::oµn::::il

Elapsed Time 142.5 · Seconds

REPRODUCED BY: 1111',
U.S. Department of Commerce

National Technical Information Service
Springfield, Virginia 22161

Exhibit C
Technical Report Documentation Page e 1. Report No. 2. Government Accession No.

4. Title and Subtitle

Animation of Traffic Through Roundabouts

7. Author(s)

John Larson III, Bryan Pearce, Per Garder

9. Performing Organization Name and Address

Department of Civil Engineering
University of Maine
Orono, ME 04469

12. Sponsoring Agency Name and Address
New England (Region One) UTC
Massachusetts Institute of Technology
77 Massachusetts Avenue, Room 1-235
Cambridge, MA 02139

- 15. Supplementary Notes
··· Supported by a grant from the US Department of

Transportation, University Transportation Centers Program

16. Abstract

3. Recipient's Catalog No.

5. Report Date

January 14, 1998

6. Performing Organization Code

8. Performing Organization Report No.

10. Work Unit No. (TRAIS)

11. Contract or Grant No.

DTRS95-G-0001

13. Type of Report and Period Covered

Final Report
9/1/96 - 12/31/97
14. Sponsoring tv;ency Code

This report describes work done on a roundabout animation program during
1997. The roundabout animation program began as an undergraduate class
project and has evolved to its current state. The program is based on the
principle of an autonomous agent. The cars are programmed to speed up, to
slow down, and to enter the roundabout based on an acceptable gap length.
That is, the gap between themselves and the cars around them. The actual gap
is compared to an allowed gap that is based on vehicle speed and assumed
driver response time. If necessary, the vehicle speed is adjusted. The cars
travel through the roundabout following a randomly assigned path. Traffic
flow values may be input into the program manually during initialization.
During simulation, the cars enter and exit randomly based on these values.
After the simulation, traffic count data and average delay data may be
displayed.

17. Key Words

Roundabout, Traffic Circle,
Simulation, Animation, Autonomous
Agent, Delay, Computer Simulation

19. Security Classif. (of this report) 20. Security Classif. (of this page)

18. Distribution Statement

21. No. of Pages

22 + Appendix

Form DOT F 1700.7 Reproduction of form and completed page is authorized

22. Price

$25,000

Abstract:
This report describes work done on a roundabout animation program during 1997.

The roundabout animation program began as an undergraduate class project and has
evolved to its current state. The program is based on the principle of an autonomous
agent. The cars are programmed to speed up, to slow down, and to enter the roundabout
based on an acceptable gap length. That is, the gap between themselves and the cars
around them. The actual gap is compared to an allowed gap that is based on vehicle
speed and assumed driver response time. If necessary, the vehicle speed is adjusted. The
cars travel through the roundabout following a randomly assigned path. Traffic flow
values may be input into the program manually during initialization. During simulation,
the cars enter and exit randomly based on these values. After the simulation, traffic count
data and average delay data may be displayed.

Animation of Traffic Through Roundabouts - 2

-----·- ------------·--··----- -··-------- ---~------~-----·······.-.-- ·· 1-·--····----···- --·--· . --... -------·-· -------------------
1
l--

•
Preface:

About two years ago, the students of CIE 115, a course in programming for first

year students in civil engineering at the University of Maine, set about the task of writing

code that would simulate the motion of traffic in a roundabout. The program was to be

based on the theory of an autonomous agent. That is, the cars would be modeled as if

they had drivers inside them controlling the actions of the car. The class was split up into

groups so the students could better devise a plan of attack. My group created a program

with some nice features, but it was far from perfect. It occasionally drew lines where it

was not supposed to draw lines, and cars frequently crashed into one another. That fall I

was a little amazed to be asked to write a report about the project we had done the

previous semester. Unfortunately, at the time I was so involved in other activities that I

could not accept the job. During the spring, Bryan Pearce, the professor of CIE 115,

wondered if I might become the student assistant for the course. This time I could and

did accept. For a semester, I helped the other students with their programming and

eventually with their own versions of simulated traffic circles.

When I was looking for a summer job, I asked Professor Pearce if he knew of

anyone who might be willing to hire me. He said, yes. He said that he and Professor Per

Garder would employ me to continue the traffic circle project over the summer. So here I

am; finally working on that report, and hopefully taking the circle a few steps further than

when I last left it.

John Larson

Animation of Traffic Through Roundabouts - 3

Abstract

Preface

Introduction

House Rules

Coordinate System

Setup

Table of contents

The Code - The House Rules in Depth

- General Declarations

- Initial Code

- PathCalculations

-Timer

-AddCars

- AdjustSpeeds

-MoveCars

Conclusion

Appendix A - The Setup Program

Appendix B - The Code

Animation of Traffic Through Roundabouts - 4

2

3 e
5

6

7

7

8

8

10

11

12

13

17

20

22

A-1

B-1

..... --- --··- .. ·- --·-~:----~-···---------,--···.-· -- r-----·-·- ·-------.. ·-·- -· ·-·------··--- -· ·- -...... -.. --
f
l•

•

Introduction:

When traffic volumes at an intersection increase to a point where the travel time

through it becomes long, or they increase to a point where the intersection becomes unsafe,

something should be done. Usually in the United States, the solution is to use a traffic light.

However, this does not always solve the delay problem. If done right, the traffic circle can be

a more efficient and safer solution.1234

Our program simulates cars travelling through a traffic circle. Since actual traffic

data changes from day to day, and from rush hour to nighttime, we have designed the

program so the user can edit the traffic flow data. The program simulates the traffic flow by

calculating the movement in time steps using a computer object called a Timer. This device

repeats the code written within it until the timer is turned off. With each repetition, or

timestep, a certain amount of "model time" passes. The variable deltaT holds the value of

this time step, for example 0.5 seconds. The total model time that the program runs can be

changed as well as the time that data starts recording. The traffic simulator will show the

cars moving along their appropriate paths with relatively few "crashes". The user can also

view the "traffic counts" generated by the program, these can be converted to vehicles per

hour (when the simulation is complete), and the average time that the cars are in the

simulation. Other options allow the user to see the actual paths the cars are moving along,

and to have t~e timer operate one step at a time.

The program development started with the traffic circle as an octagon, centered in the

window. From there, it has progressed to a circle with entrances and exits. We have now

simulated the recently constructed Gorham Traffic Circle. (Figure 1.) The setup for the

Gorham Circle was cumbersome and we hope that in the future the setup can be simplified so

any circle can be easily simulated.

1 Retting, Richard, 1996. Urban Motor Vehicle Crashes and Potential Countermeasures. Transportation
Quarterly 50/3:19-31.
2 Schoon, C.C., and J. Van Minnen, 1993. Accidents on Roundabouts. R-93-16 SWOV - Stichting
Wetenschappelijk Onderzoek Verkeersveiligheid. The Netherlands.
3 Ourston, Leif, 1994. Nonconforming Traffic Circle Becomes Modem Roundabout. Leif ourston and
Associates, Santa Barbara, California, 93111.
4 Jorgensen, Else, and N. 0. Jorgensen, 1994. Safety of 82 Danish Roundabouts. Report 4 - IVTB, Danish

Technical University .

Animation of Traffic Through Roundabouts - 5

Figure I -The Main Form

As in the beginning, we still employ the concept of autonomous agents to run the

cars. When the program is initially set up, each car (the agent) is assigned a set of

characteristics that help to define how it should act as it travels through the traffic circle. The

car then follows the traffic laws, or the computer code, according to those characteristics.

House Rules:

Prior to writing the program, we defined a set of rules that would describe how the

cars behave. First, how could we keep the cars from crashing into one another? How is it

done in real life situations? Drivers adjust their speed to match that of the car in front of

them. Therefore, they will decelerate as soon as they feel they are in danger of hitting that

car. Different drivers will do this at different times, depending on how fast they are going .

Animation of Traffic Through Roundabouts - 6

f
t

•

We developed a system such that if a car follows another too closely, then the car in back, or

the backcar, will slow.

Next, we needed to decide how the cars would enter the simulation, and where they

would enter the simulation. Based on traffic volumes the cars are randomly entered into the

simulation. This also depends on the physical space available, that is, a car may not occupy

the round circle that was centered in the

middle of the screen. However, the

conversion to the Gorham traffic circle,

dictated that we revert to the more

general Cartesian system.

Setup:

With the polar coordinate

version, setting up the traffic circle was

fairly easy. Write the code to draw a

bunch of segments and/or arcs a certain

way, then set their properties, such as

an already occupied space. Once the

cars enter, how do they know where to

go? In real life, a driver usually knows

his or her destination, we randomly

assign each car a specific exit, based on

traffic volume. This will be explained

further in AddCars.

Coordinate System:

The coordinate system used is

standard Cartesian, ranging from -200

to 200 feet in both directions (see

Figure 2). We previously used a

modified polar coordinate system with

Figure 3 - Set Up of Segments

Animation of Traffic Through Roundabouts - 7

the end points. When these segments have to be projected on top of an image of an existing

traffic circle, the task is not as simple. To work around this problem, a separate program was

created (see Appendix A). The program allows one to click on the places where the

segments' endpoints are desired. The program then prints out the x-y coordinates for those

points (Figure 3). From there, we had to "hardwire everything" so the traffic circle would

run properly. That is, we had to manually write all the code that set the properties.

Unfortunately, this is not the ideal set up solution; one goal of future versions will be to

overcome this problem.

Code - The House Rules in Depth:

General Declarations -

Before we get too involved in the explanation of the code, we should describe what

variables are being used and why. Green annotation is original to the code; blue annotation

has been added for clarification.

Private Type Point 'this is a variable type defined by us to hold the x and y

coordinates of the endpoints of the segments

x As Single 'the x coordinate

y As Single 'the y coordinate

End Type

Private Type segment 'another variable type we made up this defines the paths

carsin(20) As Integer 'list of cars in each segment - last car first

totCars As Integer 'number of cars in a segment

endPt As Integer 'index of segment ending point

length As Single 'length of segment in feet!!!!!!!!!!!!!!!!!!!!!!

leftSegs(2) As Integer 'when entering the circle look for cars on the two

segments to the left

nextSegL As Integer 'index of next segment continuing in circle - "0" if none

nextSegR As Integer 'index of next segment leaving circle - "0" if none

startPt As Integer 'index of beginning point of segment

slope As Single 'the slope of the segment

End Type

Animation of Traffic Through Roundabouts - 8

-r~-
'

•
Private Type Car 'this type defines the properties of the cars

active As Boolean 'if a car is being used or not

color As Long 'the car's color

deSpeed As Single 'desired speed or how fast the car "wants" to go

length As Single 'the car's length

width As Single 'the car's width

location As Single 'location in the segment, ratio of position to length, it has

a value between zero and one, with zero being the beginning of the segment

new As Boolean 'if this is true the program will know not to "erase" the car

after the first time step

nextseg As Integer 'next segment car is headed for, "-1" for an exit segment

and "O" if not assigned yet

segment As Integer 'number of the segment

speed As Single 'actual speed

exit As Integer 'assigned exit segment

begintime As Single 'time the car enters

entrance As Integer 'segment the car enters on

End Type

Private myPts(50) As Point 'array of points

Private mySegs(50) As segment 'array of segments

Private myCars(lOO) As Car 'array of cars

Private oldFront(l 00) As Point, oldBack(l 00) As Point 'these hold the old positions

of the cars

Private numCars As Integer 'number of cars

Private numSegs As Integer 'number of segments

Private deltaT As Single, yieldPt As Single 'the time that passes each timestep, the

point where the cars "look" to enter the circle

Private black As Long 'the color black

Private carFront As Point, carBack As Point 'endpoints of the cars

Dim TimeSteps As Long 'number oftimesteps

Dim Leftt(l3 To 16) As Single 'these determine where cars exit

Dim Straight(13 To 16) As Single

Animation of Traffic Through Roundabouts - 9

Dim Right(13 To 16) As Single

Dim PutCarlnNow(l 3 To 16) As Single 'the probability that a car will enter

Dim counter(4, 4) As Integer 'keeps track of the mean delay time

Dim frontcar As Integer, backcar As Integer 'these six variables are used to control

speed, the car in front, the car in question

Dim thisseg As Integer, nextseg As Integer 'the segment backcar is on, the segment

it is going to

Dim gap As Single, allowedGap As Single 'the gap between the two cars, and

minimum gap allowed between them

The
MSFlexGrid

These of course are not all of the

variables used. They are, however,

the major ones. The others shall be

described as needed.

Initial Code -

When the program first starts

up, only one button is active. That is

the Input Data button on the main

form (see Figure 1.). When this

button is clicked a separate form

Figure 4 - frmlnput

Figure 5 - The Segments

Animation of Traffic Through Roundabouts - 10 •

•
comes up that allows the controlling data for the program to be edited. This new form,

frmlnput (see Figure 4), is set up with an MSFlexGrid control, and holds the vehicles per

hour data for each path. A method for editing this data, and a way to change the time for

which the program will run, or runtime, and the time at which the output data starts recording

are also included on this form. The default data is entered under the form _load event, that is,

when the form loads into memory.

Once this is finished, the Setup button becomes active (Figure 1.). The code under

(or associated with) this button is straightforward. It initializes variables and properties to be

used later, and it calls procedures that setup the cars, points, and segments.

CarSetup loops through all the cars in the myCars array and makes sure that the

active property is set to false. It also sets the dimensions, color and desired speed for each

car. The New property is set to true so the program knows that this is the first time each car

will be drawn.

In PointSetup the program opens the file point.txt and reads in the x and y

coordinates for each of the points. Editing point.txt in Notepad, or Wordpad, can change the

points' coordinates. EndPointSetup "hardwires" the indexes of the points that define each

segment. SegSetup sets the length and slope properties of each segment, and sets the

leftSegs, nextSegL and nextSegR properties. These last two variables help set up the

direction in which the traffic will move. They are set up according to the direction of

movement. NextSegR will be the segment on the right, if there is a choice.- If there is no

choice, then nextSegR will have the value of zero and nextSegL will be the next segment.

LeftSegs are used to see if there is room to enter the actual circle. If there is a car

approaching the circle and there is another car within the circle to the left of the intersection,

on one of the LeftSegs, then there is no room to enter and the first car must wait. SegSetup

will also draw the segments and points over the background if the checkbox on the main form

tells it to do so (see Figure 5).

PathCalculations -

The Setup button also calls the procedure PathCalculations. This procedure

implements the logic that will decide where the cars will enter the circle, when they will enter

the circle, and where they will go once they do. PathCalculations reads the data from the

MSFlexGrid on frmlnput (Figure 4), and for each entrance, it calculates the probability that a

Animation of Traffic Through Roundabouts - 11

car would tum left or right, go straight, or make a U-tum. It will also calculate the

probability of cars entering each entrance each timestep.

In computing the probabilities, PathCalculations gives values to three variables for

each entrance: Leftt, Straight, and Right. Right is always calculated first. Its value is the

simple probability that a car will tum right if it starts on the appropriate entrance. Next, the

value for Straight is set. This is the sum of the simple probability of straight going cars and

the value of Right. Last, the simple probability of left turning cars is added to Straight to get

the value for Leftt. (Leftt is spelled with two t's to avoid internal conflicts within Visual

Basic.) I will explain why their values are found this way when I explain AddCars. The last

thing done in PathCalculations is to originate the PutCarlnNow variable for each entrance.

The value for these variables is the probability that a car would enter on the appropriate

entrance in any timestep.

Timer-

Once the code for the

Setup button is finished, the

Run button becomes active.

Clicking this button enables the

Timer, enables the Stop button,

and disables itself. The Stop

button simply does the opposite

of the Run button. However,

the Timer becomes the central

nervous system of the whole

program (see Figure 6). It calls

Add 1 to timesteps
Must keep track

Call procedures
AddCars and MoveCars
Output current time in
seconds to the Elapsed

Time textbox

Figure 6 - Flowchart for the Timer

the two major components of the animation control, AddCars and MoveCars. If the Single

Step checkbox is checked then the Timer will tum itself off and tum the Run button back on.

This will continue until the box is unchecked. In addition, the Timer calls the procedure

CheckTime. This checks to see if it is time to stop the animation and relevant computations,

and will do so if it is.

Animation of Traffic Through Roundabouts - 12

•

•

i = 1 'keeps track of cars
j = 12 'keeps track of entrances

j = j + 1

Call the procedure
CheckProbability

Figure 7 - Flowchart for AddCars

AddCars-

AddCars searches all the

cars being used until it finds the

first four that are inactive (see

Figure 7). Each car is given a

chance to enter one of the four

entrances. CheckProbability

determines if a car will enter or

not (Figure 8). It does this by

first returning a random number.

If this number is less than the appropriate PutCarlnNow variable, then CheckProbability will

let the car enter and the procedure EnterNow will be called.

Before it does anything else Enter Now checks to see if there is the "physical" space

on the entrance segment to add a car. In other words, if there is no car on the entrance

segment or the car that is there is beyond a certain distance, then a car can be added.

Otherwise, no car will enter this segment on

this timestep.

x=Rnd When the car is allowed on,

EnterNow makes the car active and sets its

location to the beginning of the entrance

segment. Next, the car's destination is

made known using the FindExit procedure.

This is where the other variables defined in

a random number
Put car ion
entrancej

PathCalculations come into play.

Call the
procedure
EnterNow

FindExit is based on the logic that Figure 8 - Flowchart for CheckProbability

the sum of all the probabilities of a car

taking one of the possible paths is one. Remember when finding the values for Right,

Straight, and Leftt we kept adding the previous variable to the correct probability to get the

next. Here is why. If we use a random number generator to get a number between zero and

one, we can use these variables to determine which direction the car will tum. Here's a

section of the code with an example .

segin = myCars(i).segment 'the entrance the car is on.

Animation of Traffic Through Roundabouts - 13

x = Rnd 'a random number between 0 and almost I, let's say 0.754832

Ifx < Right(segin) 'defaulted to 0.3333 ... - hmm, not less then this

Then direction = "right"

Elself x < Straight(segin) 'defaulted to 0.666 ... - or this either

Then direction = "straight"

Elself x < Leftt(segin) 'defaulted to 1.00 - ah here we are

Then direction = "left"

Else 'with the default data there are no u-tums

direction = "back"

End If

The sample car will be turning left. This part has been set up so the exits will be randomly

picked, but also they will depend on the vehicles per hour that should follow the paths. x is

found using the Rnd function, a random number generator. If it is less than Right the car will

tum right; less than Straight, straight; less than Leftt, left. If, however, the random number is

greater than Leftt the car will make a u-tum through the circle.

Once the direction is found, the index of the exit segment needs to be assigned to the

car's exit property. (See Figure 9 for indexes of the Segments.) "Case statements" that are

based on the entrance on which the car is, that are nested within "case statements" that are

based on the direction of the car, can do this. This method may seem a bit cumbersome and

unwieldy; however, it was the simplest and the most straightforward way to be done. Nested

case statements are used quite often throughout the program, because of the decisions that

need to be made that rely on two variables.

Animation of Traffic Through Roundabouts - 14

•

•

•

EnterNow calls the FindNextSegment procedure after executing FindExit. This

procedure goes through several if statements in a series, sometimes referred to as a block If
statement. First, we check to see if there are any segments beyond the segment that the car in

Figure 9 - Indexes of Segments

question is on.

In this case, there

has to be at least

one, smce a car

just entered the

circle, but if

there are no

segments then

the car's nextseg

property is set to

negative one.

That way the

program will

know what to do

and remove the

car from the

simulation.

Next, we want to

know ifthere is a

choice of going

left or right. If not, the segment's nextSegL property will become the car's nextseg property.

However, ifthere is a choice, we need to know if this is where the car will tum. If the car

exits here then nextseg becomes the nextSegR property; otherwise, it is nextSegL. Interested

readers may want to look at the code:

segin = myCars(i).segment 'segment the car, i, is in Let's say we're on entrance 14

(see Figure 8)

If mySegs(segin).nextSegL = 0 Then 'we are on the exit ramp But we're not, we're

on segment 14

·myCars(i).nextseg = -1

ElselfmySegs(segin).nextSegR = 0 Then 'we tum left here

Animation of Traffic Through Roundabouts - 15

myCars(i).nextseg = mySegs(segin).nextSegL

ElseifmyCars(i).exit = mySegs(segin).nextSegR Then 'but we said we wanted to go

left (Page 12) through the circle, this is not our exit.

myCars(i).nextseg = mySegs(segin).nextSegR

Else 'so nextseg becomes segment 25 (Figure 9)

myCars(i).nextseg = mySegs(segin).nextSegL

End If

This procedure has worked very well, and has been only slightly modified since the spring

course in 1996. The most important of these was in changing how the cars decided to tum

off the circle. In the original homework program, the decision was made by probability

within FindNextSegment. Now the exit is already known, a priori, all we need to do is

compare nextSegR with the exit.

Once we have found the next segment for which we are heading, we need to fix the

carsln array and the totCars property for the entrance segment. When updating the array, we

move all of the cars in the array to the next highest slot in the array and put our car in slot

one. After this,

we must

increase the

totCars, or total

cars, property

by one.

Now

that we know

where the car

has entered and

where it will
Figure 10 - fun VPH

exit, we can update the grid on fnn VPH (see Figure 10). EnterNow calls the procedure

UpdateOutput to accomplish this task. Of course, UpdateOutput will do nothing unless the

elapsed time has reached the time at which data starts recording. When it is time to record

data, the procedure enters another nested case statement (this one relies on the car's entrance

and exit) to determine which cell in the grid to increment by one.

Before the car moves, we must adjust the car's speed so it will not be likely to crash

into the car in front of it. To do this, we must call the procedure AdjustSpeeds twice. This

Animation of Traffic Through Roundabouts - 16 •

may seem like the car will be over-accelerating; however, it really is not. By calling

AdjustSpeeds twice, we are, in actuality, adjusting the speed of the car along the long

• approach to the circle, the approach that would normally be beyond what is represented in the

simulation.

•

The last two steps EnterNow performs are to set the car's begintime property and the

car's entrance property. These will be used later in the procedure FindDelayTime.

AdjustSpeeds -

First, we need to find the values for the variables we will be using. In AdjustSpeeds,

we set values to the variables: accel, taken from the acceleration text box on frmMain;

backcar, the car being controlled (conceptually the car in which we are riding); thisseg, the

segment backcar is on; and nextseg, the segment to where backcar is heading. At this point,

AdjustSpeeds enters a Do loop in order to find a value for j. This is the index of the

backcar' s place in the carsin array for thisseg. j becomes useful when trying to find the value

of frontcar, the car in front of backcar. Here we set the values of lookLeftSeg and

lookLeftCar. They are used ifthe car is approaching an intersection. What happens then will

be explained later.

Next, the Boolean variable flag is set to false. This variable will let the program

know if we had to slow backcar because it was getting to close to frontcar. Now, we find the

value of allowedGap, using the equation: allowedGap = CSng(txtGap.Text) *
myCars(backcar).speed A 1.5 + 2 * myCars(backcar).length. The CSng(txtGap.Text) is the

value taken from the text box on frmMain. MyCars(backcar).speed is backcar's speed. It is

taken to the power of 1.5 to make allowedGap small when the speed is low and large when to

speed is high. The length of backcar is entered into the equation to account for the fact the

gaps are measured from the centers of the cars. This length is multiplied by two as a safety

factor .

Animation of Traffic Through Roundabouts - 17

Set the accel, backcar,
thisseg, and nextseg

variables. 'the acceleration,
the car in question, the

segment backcar is on, and
the segment coming up,

respectively

Slow

Speed=O

Find backcar's
position in

thisseg's carsln
array

Slow backcar.
Set Flag to true.

Speed Up.

Set the allowedGap
variable

Figure 11 - Flowchart for AdjustSpeeds

Find a value for
frontcar 'that's the

car in front of

Find Gap variable

Slow to the
Desired Speed

Once these variables are defined, we can find the value for frontcar. First, we check

thisseg. Because of the way the carsln array is set up, we can see if frontcar is on thisseg by

adding one to j and then checking that spot in the array for a number other than zero. If we

get a number then that will be frontcar, and Gap's value will be the difference of frontcar's

and backcar's location multiplied by thisseg's length. If there is no car in front of backcar on

thisseg, we look to see if nextseg is negative one, meaning that the car will be leaving the

simulation. If this is the case nothing need be done and we can move on. However, if this is

not the case, we need to find out how far ahead the next car is. We do this by calling the

aptly named procedure FindFrontCar.

FindFrontCar uses the same variables we have already defined in AdjustSpeeds. It

first initializes the Gap variable with the length of thisseg that backcar has not yet traveled.

Then it uses a Do loop to find frontcar. Let us look at the code:

Animation of Traffic Through Roundabouts - 18

•

•

•

•

gap= (1 - myCars(backcar).location) * mySegs(thisseg).length 'the remaining length

ofthisseg

Do 'the program will loop back to here

frontcar = mySegs(nextseg).carsln(l) 'the last car on nextseg

If frontcar <> 0 Then 'is there a car on nextseg?

gap= gap+ myCars(frontcar).location * mySegs(nextseg).length 'add the

length of nextseg traveled by frontcar if there is.

Exit Do

Else

gap= gap+ mySegs(nextseg).length 'add the entire length of nextseg ifthere

is not.

End If

thisseg = nextseg 'if frontcar wasn't found we need to find the next nextseg

If mySegs(thisseg).nextSegR = 0 Then 'this part is just like FindNextSegment

nextseg = mySegs(thisseg).nextSegL

Elself myCars(backcar).exit = mySegs(thisseg).nextSegR Then

nextseg = mySegs(thisseg).nextSegR

Else

nextseg = mySegs(thisseg).nextSegL

End If

If nextseg = 0 Then gap = allowedGap + gap 'just to make sure

Loop Until gap >= allowedGap Or thisseg >= 39 'keep looking until it doesn't

matter

The second to last line was added because the cars were slowing prematurely and just before

they got on the last segment before leaving the simulation. As they grew close to the

beginning of the last segment, the gap would only be a small amount plus the length of the

last segment. Thus, Gap would be smaller than allowedGap, and the car would slow.

FindFrontCar was created to find an accurate value for Gap. With this value, we can

now adjust backcar' s speed if need be. If Gap is less than the allowedGap, we need to slow

backcar. So, to do this we subtract the product of accel, the acceleration in g's; 32.2 ft/sec2
,

g; and the time that has passed since last we checked, deltaT from backcar's speed. Then, we

set flag to true. Next, we check backcar's speed against the rest of our initial rules. If flag

• were false at this point and backcar were going slower than its desired speed, or deSpeed,

Animation of Traffic Through Roundabouts - 19

then it should speed up. In this case, we add the aforementioned product to backcar's speed.

However in any case, if backcar should be going faster than its deSpeed, then, since it should

not be going that much faster, we set its speed equal to its deSpeed. Next, if the car is

approaching an intersection (i.e. the main traffic circle and one of its entrances), it needs to

look left and see if there is a car coming. In the code it does this by first checking the value

of lookLeftCar. If that is not zero, then it checks to see if lookLeftCar's location is high

enough that it will be in the way of entering (or close enough to crash into). If so, then

backcar will slow the same way it did before. The last thing AdjustSpeeds checks for is to

see if backcar has slowed so much that it has started going backwards. In other words, has

backcar's speed gone below zero? If it has then its speed is set to zero, as if it were waiting

in a queue.

MoveCars-

MoveCars has been split into

two procedures: SwitchSegments, which

moves the cars along, calls adjust speeds

and switches the segments the cars are

on when necessary; and DrawCars,

which draws and erases the cars as they

move around the traffic circle.

SwitchSegments loops through

nextsegL '

T ,rncMion = 0 'iOO

nextsegR

Direction of Travel

A Car Travelling along a Segment

all the "active" cars, the cars with their Figure 12 - Location

active property set to true. It calls AdjustSpeeds for every one, and advances the cars along

the segments. It does the latter using the equation: myCars(i).location = myCars(i).location +

myCars(i).speed * deltaT I segLength. The location increment is the distance the car would

have traveled in one timestep. The car's location has a value between zero and one, no matter

how long the segment is. It is merely a ratio of how far the car has gone to how far it could

go. (see Figure 12) Therefore, when we multiply the car's speed with the elapsed time we

get the distance the car has actually gone. To relate that to the cars location value we need to

divide by the length ofthisseg, segLength. (Thisseg and nextseg are used here as well.)

Animation of Traffic Through Roundabouts - 20

•

•

•

•

•

•

If the car's location becomes larger than one, then the car has moved onto the next

segment, and it must be treated accordingly. First the carsin array and the totCars property

for thisseg must be updated. When that is done, we check to see if the car is leaving the

simulation, in which case nextseg equals negative one. If it is, then make the car inactive, set

Figure 13 - frmDelayTime

its new property to true, and

erase it so it does not leave a

"blip" on the screen. We

also call the procedure

FindDelayTime at this

point. This uses a nested

case statement to find the

proper cell m · the

MSFlexGrid control. Once

found, it will update the

average delay (see Figure

13). If the car is not leaving

the simulation, then we must update the carsin array and the totCars property of nextseg .

Then, we call FindNextSegment to find the new nextseg, and correct the car's location so it

will fit its new segment.

The animation is the apparent motion of our drawings. In actuality the drawings are

not moving. In the traffic circle program, the cars, are being drawn and erased and drawn

again in a different place, creating the illusion of motion. Initially, the cars were just round

dots. When we extended them into lines, we had trouble orientating them. We came up with

the following rules for orienting the "cars." When on the round circle, to find the angle of the

car, add 90 degrees to the angle of the car's location on the circle. When on a straight line, or

a curved line for that matter, the angle of the car is the arctangent of the slope of the line at

the point where the car is. The endpoints of the car could then be found using trigonometry.

DrawCars loops through all the "active cars", and will find their new x and y

coordinates, measured at the center of the car. It does this by finding the endpoints of the

segment the car is on and interpolating the car's coordinates using the coordinates of the

endpoints and the car's location. It will then find the angle of the car, CarAngle, and the.

car's endpoints as described above. After setting the drawwidth to the width of the car, it

will draw the car using Visual Basie's line command. If the car's new property is not set to

Animation of Traffic Through Roundabouts - 21

true then DrawCars will erase the old drawing of the car at its old position. If it were set to

true then DrawCars would do nothing except set the new property to false, because there is

no old drawing to erase. Lastly, DrawCars will store the coordinates of the car's endpoints so

it can erase it during the next time step.

Conclusion:

The simulation/animation program presented here is based on a homework

problem assigned to civil engineering students in an introductory computer class at

University of Maine. The initial model development was partially funded by a grant

from the New England UTC program through the project "Visual Aids in the Public

Participation Process." The program is based on the principle of an autonomous agent­

the motor vehicle-programmed to speed up or slow down in order to keep its desired

velocity-which is randomly chosen at or below the maximum permissible speed-and

keep a minimum gap to the preceding vehicle. The autonomous vehicle doesn't enter the

circulating lane unless an acceptable gap is provided. Vehicles are assigned paths

through the roundabout based on quarter-hour volumes for each possible path. Travel

times-and delays-are calculated for each vehicle and then averaged over paths and

time periods. Vehicle positions are continuously shown on the screen in real time or in

scaled time. Build-ups of queues for varying degrees of saturation are dire~tly illustrated

on the screen. This animation can be a valuable help when comparing different design

proposals.

The modifications made within this project have added a sense of realism to the

simulation. This is exemplified with superimposing the movements on the geometric

outline of the recently constructed roundabout in Gorham, Maine, rather than on a

'perfect' circle with four spokes in orthogonal positions as in the original homework.

Also, a method of inputting traffic flow data was added and new output modules were

developed. The output now includes average simulated travel time through the

roundabout. However, the program has not yet been validated against its real life

counterpart. Therefore, simulated travel times and delays may differ significantly from

those actually experienced at the Gorham roundabout.

Animation of Traffic Through Roundabouts - 22

•

•

•

•

The simulation/animation model can be modified to any geometric design with

respect to number of approach legs, approach angles, circle diameter, skews, etc., but

only one-lane approaches and one-lane circulating roadways can be simulated at this

time. And changing the geometric layout takes, at present, many hours. The model

could be automated with respect to geometric set-up, potentially making it more

attractive to clients. A strength of the present program is the simplicity of its execution

once it is set up, and that simplicity should be guarded. Many existing animation

programs-such as NetSim-lack user-friendliness.

The program can be improved with respect to numerous aspects. And before it is

used in any commercial way, it needs to be calibrated and validated against real data. A

thorough quality control with respect to reliability is needed prior to this, ensuring that

the model actually follows all specified rules. Once the model is proven reliable and

validated it will be a valuable tool in illustrating the effect of choice of junction type as

well as how detailed geometric layout influences queue lengths and travel times .

Animation of Traffic Through Roundabouts - 23

•

•

•

Appendix A:
Dim numPoints As Integer
Dim saveX(IOOO) As Single
Dim saveY(IOOO) As Single
Dim numLines As Integer
Dim lineStart(500) As Integer
Dim lineEnd(500) As Integer
Dim lineThickness(500) As Integer

Private Sub Commandl_ClickO
Printer .EndDoc
End Sub

Private Sub Form_LoadO
Picturel.Scale (-200, 200)-(200, -200)
numPoints = 0
numLines = 1
End Sub

Private Sub Picturel_MouseDo'Wn(Button As Integer, Shift As Integer, X As Single, Y As
Single)
If Button= 1 Then

Picture I .Circle (X, Y), 3
numPoints = numPoints + 1
saveX(numPoints) = X
saveY(numPoints) = Y
lineStart(numLines) = numPoints

Else
Picture I.Line -(X, Y)
Picture I .Circle (X, Y), 3
numPoints = numPoints + 1
saveX(numPoints) = X
saveY(numPoints) = Y
lineEnd(numLines) = numPoints
numLines = numLines + 1
lineStart(numLines) = numPoints

End If
Debug:Print X, Y, numPoints
Printer.Print X, Y, numPoints
End Sub

Private Sub Picturel_PaintO
Dim i As Integer
For i = 1 To numLines - 1

Picturel.Circle (saveX(lineStart(i)), saveY(lineStart(i))), 3
Picture I .Line -(saveX(lineEnd(i)), save Y (lineEnd(i)))
Picturel.Circle (saveX(lineEnd(numLines - 1)), saveY(lineEnd(numLines - 1))), 3

Nexti
End Sub

Animation of Traffic Through Roundabouts - A-1

. .

•

•

•

•

Appendix B:
frm"tJain
Option Explicit
Private Type Point

x As Single
y As Single

End Type

Private Type segment
carsin(20) As Integer 'list of cars in the segment
totCars As Integer 'number of cars in segment
endPt As Integer 'index of ending point
length As Single 'length of segment in feet
leftSegs(2) As Integer 'when entering the circle look for cars
nextSegL As Integer 'index of next segment continuing in circle - "O" if none
nextSegR As Integer 'index of next segment leaving circle - "O'" if none
startPt As Integer 'index of beginning point
slope As Single

End Type

Private Type Car
active As Boolean 'if a car is being used or not
color As Long
deSpeed As Single 'desired speed
length As Single
width As Single
location As Single 'location in the segment
new As Boolean
nextseg As Integer 'next segment car is headed for

"'-1" for an exit segment and "O" if not assigned yet
segment As Integer 'number of the segment
speed As Single 'actual speed
exit As Integer 'assigned exit segment
begintime As Single 'time enters
entrance As Integer 'segment enters on

End Type

Private myPts(50) As Point 'array of points
Private mySegs(50) As segment 'array of segments
Private myCars(l 00) As Car 'array of cars
Private oldFront(l 00) As Point, oldBack(l 00) As Point
Private numCars As Integer 'number of cars
Private numSegs As Integer 'number of segments
Private deltaT As Single, yieldPt As Single
Private black As Long
Private carFront As Point, car Back As Point 'endpoints of the cars
Dim TimeSteps As Long 'number of timesteps
Dim Leftt(13 To 16) As Single 'these determine where cars exit
Dim Straight(13 To 16) As Single
Dim Right(13 To 16) As Single
Dim PutCarinNow(13 To 16) As Single 'the probability that a car will enter
Dim counter(4, 4) As Integer 'keeps track of the mean delay time
Dim frontcar As Integer, backcar As Integer 'these six variables are used to control speed
Dim thisseg As Integer, nextseg As Integer
Dim gap As Single, allowedGap As Single

Animation of Traffic Through Roundabouts - B-1

•

•

•

•

Private Sub cmdClear _ ClickO
Dim i As Integer, j As Integer
pctPix.Cls
For i =I To 4

frm VPH.grdVPH.Row = i
Forj = 1To5

frmVPH.grdVPH.Col = j
frmVPH.grdVPH.Text = CStr(O)

Nextj
Nexti

For i = 1To4
Forj = 1To4

counter(i, j) = 1
Nextj

Nexti

For i = 1To4
frmDelayTime.grdDelays.Row = i
Forj = 1To4

frmDelayTime.grdDelays.Col = j
frmDelayTime.grdDelays.Text = CStr(O)

Nextj
Nexti

frm VPH.cmdVPH.Enabled = False
End Sub

Private Sub cmdDelay _ ClickO
frmDelayTime.Show
End Sub

Private Sub cmdlnput_ ClickO
cmdSetUp.Enabled = True
frmlnput.Show
End Sub

Private Sub cmdOutput_ ClickO
frm VPH.Show
End Sub

Private Sub cmdQuit_ ClickO
End
End Sub

Private Sub cmdRun _ ClickO
Timerl .Enabled = True
cmdStop.Enabled = True
cmdRun.Enabled =False
End Sub

Private Sub cmdSetUp _ ClickO
Dim x As Single, i As Integer, j As Integer, k As Integer
cmdRun.Enabled = True

Animation of Traffic Through Roundabouts - B-2

•

•

•

cmdClear.Enabled = True
Randomize
black = RGB(O, 0, 0)
Erase mySegs
Erase myCars .
yieldPt = CSng(txtyieldPt.Text)
pctPix.Scale (-200, 200)-(200, -200) 'set user scale
pctPix.DrawMode = 10 'Not xor - same as the clock problem
pctPix.DrawStyle = 0 'Solid line
PointSetup
EndPointSetup
SegSetup
numCars = 100 'number of cars in array
deltaT = 0.5 'time step
Path Calculations
CarSetup
TimeSteps = 0 'Initialize this variable
For i = 1 To 4 'initialize these too

Forj = 1To4
counter(i, j) = 1

Nextj
Nexti
End Sub
Private Sub cmdStop _ ClickO
Timer I.Enabled= False
cmdRun.Enabled = True
cmdStop.Enabled = False
End Sub
Private Sub Form_LoadO
cmdSetUp.Enabled = False
cmdRun.Enabled = False
cmdStop.Enabled = False
cmdClear.Enabled =False
End Sub

Private Sub Timer 1 _ TimerO
TimeSteps = TimeSteps + 1 'count the timesteps
Add Cars
MoveCars
txtElapsedTime.Text = deltaT * TimeSteps
CheckTime 'check to see if its time to stop
If chkSingleStep.Value = 1 Then

Timerl.Enabled =False
cmdRun.Enabled = True

End If
End Sub

Public Sub MoveCarsO
SwitchSegments
DrawCars
End Sub

Public Sub AdjustSpeeds(i As Integer)
Dimj As Integer, k As Integer
Dim accel As Single, flag As Boolean

Animation of Traffic Through Roundabouts - B-3

•

•

•

Dim lookLeftSeg As Integer, lookLeftCar As Integer
accel = CSng(txtAcceleration.Text)
backcar = i 'car we are in
thisseg = myCars(backcar).segment
nextseg = myCars(backcar).nextseg
j=O .
k=O
Do Until k= i

j = j + 1
k = mySegs(thisseg).carsinG)

Loop
lookLeftSeg = mySegs(thisseg).leftSegs(l)
lookLeftCar = mySegs(lookLeftSeg).carsin(mySegs(lookLeftSeg).totCars)
flag= False
allowedGap = CSng(txtGap.Text) * myCars(backcar).speed" 1.5 _

+ 2 * myCars(backcar).length
If mySegs(thisseg).carsinG + 1) <> 0 Then 'there is a car in front on this segment

frontcar = mySegs(thisseg).carsinG + 1)
gap= (myCars(frontcar).location - myCars(backcar).location) _

* mySegs(myCars(thisseg).segment).length
Elself nextseg = -1 Then

'Do nothing since car is on its way out
Else

FindFrontCar (i) 'need to find out many segments ahead the next car is
End If
If gap < allowedGap Then

myCars(backcar).speed = myCars(backcar).speed- accel * 32.2 * deltaT
flag =True

End If
If (flag= False) And (myCars(l?ackcar).speed < myCars(backcar).deSpeed) Then 'speed up

myCars(backcar).speed = myCars(backcar).speed + accel * 32.2 * deltaT
End If
If (myCars(backcar).speed > myCars(backcar).deSpeed) Then 'slow down

myCars(backcar).speed = myCars(backcar).deSpeed
End If
If lookLeftCar <> 0 Then

If (myCars(lookLeftCar).location > ((mySegs(myCars(lookLeftCar).segment).length -
21.3) I mySegs(myCars(lookLeftCar).segment).length)) And (myCars(backcar).location >
yieldPt) Then

myCars(backcar).speed = myCars(backcar).speed- accel * 32.2 * deltitT
End If

End If
If myCars(backcar).speed < 0 Then myCars(backcar).speed = 0
End Sub

Public Sub FindNextSegment(i As Integer)
'If you are in this subroutine then you are trying to figure out
'where the car i is going next.
Dim segin As Integer
segin = myCars(i).segment 'segment car i is in

If mySegs(segin).nextSegL = 0 Then 'we are on the exit ramp
myCars(i).nextseg = -1

Elself mySegs(segin).nextSegR = 0 Then
myCars(i).nextseg = mySegs(segin).nextSegL

Elself myCars(i).exit = mySegs(segin).nextSegR Then

Animation of Traffic Through Roundabouts - B-4

•

•

myCars(i).nextseg = mySegs(segin).nextSegR
Else

myCars(i).nextseg = mySegs(segin).nextSegL
End If

End Sub
Public Sub AddCarsO
Dim i As Integer, j As Integer
j = 12
For i = 1 To numCars

If myCars(i).active =False Then 'we can add it somwhere
j = j + 1
Call CheckProbability(i, j) 'to see if its time to enter a car
If j = 16 Then Exit For

End If
Nexti
End Sub

Public Sub FindExit(i As Integer)
Dim segin As Integer
Dim x As Single
Dim direction As String 'where going?
segin = myCars(i).segment
x=Rnd
Ifx < Right(segin) Then

direction = "right"
Elselfx < Straight(segin) Then

direction= "straight"
Elselfx < Leftt(segin) Then

direction = "left"
Else

direction = "back"
End If
Select Case direction

Case "left"
Select Case segin

Case 13
myCars(i).exit = 20

Case 14
myCars(i).exit = 17

Case 15
myCars(i).exit = 18

Case 16
myCars(i).exit = 19

End Select
Case "straight"

Select Case segin
Case 13

myCars(i).exit = 19
Case 14

myCars(i).exit = 20
Case 15

myCars(i).exit = 17
Case 16

myCars(i).exit = 18
End Select

Animation of Traffic Through Roundabouts - B-5

•

•

Case "right"
Select Case segin

Case 13
myCars(i).exit = 18

Case 14
myCars(i).exit = 22

Case 15
myCars(i).exit = 20

Case 16
myCars(i).exit = 21

End Select
Case "back"

Select Case segin
Case 13

myCars(i).exit = 17
Case 14

myCars(i).exit = 18
Case 15

myCars(i).exit = 19
Case 16

myCars(i).exit = 20
End Select

End Select
End Sub

Public Sub UpdateOutput(i As Integer)
Dim segin As Integer, cExit As Integer., j As Integer, k As Integer, esum As Integer, exsum
As Integer ·
If (deltaT * TimeSteps) >= (frmlnput.txtETime.Text * 60) Then

segin = myCars(i).segment
cExit = myCars(i).exit
Select Case segin

Case 14
frm VPH.grdVPH.Row = 1
Select Case cExit

Case 18
frm VPH.grdVPH.Col = 4

· frmVPH.grdVPH.Text = CStr(Cint(frmVPH.grdVPH.Text) + 1)
Case22

frm VPH.grdVPH.Col = 3
frmVPH.grdVPH.Text = CStr(Cint(frmVPH.grdVPH.Text) + 1)

Case 20
frm VPH.grdVPH.Col = 2
frmVPH.grdVPH.Text = CStr(Cint(frmVPH.grdVPH.Text) + 1)

Case 17
frmVPH.grdVPH.Col = 1
frmVPH.grdVPH.Text = CStr(Cint(frmVPH.grdVPH.Text) + 1)

End Select
Case 15

frm VPH.grdVPH.Row = 2
Select Case cExit

Case 18
frmVPH.grdVPH.Col = 1
frmVPH.grdVPH.Text = CStr(Cint(frmVPH.grdVPH.Text) + 1)

Case 19

Animation of Traffic Through Roundabouts - B-6

•

frm VPH.grdVPH.Col = 4
frmVPH.grdVPH.Text = CStr(Cint(frmVPH.grdVPH.Text) + 1)

Case 20
frmVPH.grdVPH.Col = 3
frmVPH.grdVPH.Text = CStr(Cint(frmVPH.grdVPH.Text) + 1)

Case 17
frmVPH.grdVPH.Col = 2
frmVPH.grdVPH.Text = CStr(Cint(frmVPH.grdVPH.Text) + 1)

End Select
Case 16

frm VPH.grdVPH.Row = 3
Select Case cExit

Case 18
frm VPH.grdVPH.Col = 2
frmVPH.grdVPH.Text = CStr(Cint(frmVPH.grdVPH.Text) + 1)

Case 19
frm VPH.grdVPH.Col = 1 .
frmVPH.grdVPH.Text = CStr(Cint(frmVPH.grdVPH.Text) + 1)

Case 20
frm VPH.grdVPH.Col = 4
frmVPH.grdVPH.Text = CStr(Cint(frmVPH.grdVPH.Text) + 1)

Case 21
frmVPH.grdVPH.Col = 3
frmVPH.grdVPH.Text = CStr(Cint(frmVPH.grdVPH.Text) + 1)

End Select
Case 13

frm VPH.grdVPH.Row = 4
Select Case cExit

Case 18
frm VPH.grdVPH.Col = 3
frmVPH.grdVPH.Text = CStr(Cint(frmVPH.grdVPH.Text) + 1)

Case 19
frm VPH.grdVPH.Col = 2
frmVPH.grdVPH.Text = CStr(Cint(frmVPH.grdVPH.Text) + 1)

Case 20
frmVPH.grdVPH.Col = 1
frmVPH.grdVPH.Text = CStr(Cint(frmVPH.grdVPH.Text) + 1)

Case 17
frm VPH.grdVPH.Col = 4
frmVPH.grdVPH.Text = CStr(Cint(frmVPH.grdVPH.Text) + 1)

End Select
End Select
Fork= 1To4

esum=O
frm VPH.grdVPH.Row = k
Forj = 1To4

frmVPH.grdVPH.Col = j
esum = esum + Cint(frmVPH.grdVPH.Text)

Nextj
frmVPH.grdVPH.Col = 5
frmVPH.grdVPH.Text = esum

Nextk
End If
End Sub

Animation of Traffic Through Roundabouts - B-7

•

Public Sub PathCalculationsO
Dim i As Integer
Dim sum(13 To 16) As Single
'traffic from segment 14
sum(14) = 0
frmlnput.grdlnput.Row = 1
For i = 1To4

frmlnput.grdlnput.Col = i
sum(14) = sum(14) + CSng(frmlnput.grdlnput.Text)

Nexti
frmlnput.grdlnput.Col = 3
Right(14) = CSng(frmlnput.grdln'put.Text) I sum(14)
frmlnput.grdlnput.Col = 2
Straight(14) = Right(14) + CSng(frmlnput.grdlnput.Text) I sum(14)
frmlnput.grdlnput.Col = 1
Leftt(14) = Straight(14) + CSng(frminput.grdlnput.Text) I sum(14)
'traffic from segment 15
sum(15) = 0
frmlnput.grdlnput.Row = 2
For i = 1To4

frmlnput.grdlnput.Col = i
sum(15) = sum(15) + CSng(frminput.grdlnput.Text)

Nexti
frmlnput.grdlnput.Col = 3
Right(15) = CSng(frmlnput.grdlnput.Text) I sum(15)
frmlnput.grdlnput.Col = 2
Straight(15) = Right(15) + CSng(frmlnput.grdlnput.Text) I sum(15)
frmlnput.grdlnput.Col = 1
Leftt(15) = Straight(15) + CSng(frmlnput.grdlnput.Text) I sum(15)
'traffic from segment 16
sum(16) = 0
frmlnput.grdlnput.Row = 3
For i = 1To4

frmlnput.grdlnput.Col = i
sum(16) = sum(16) + CSng(frmlnput.grdlnput.Text)

Nexti
frmlnput.grdlnput.Col = 3
Right(16) = CSng(frmlnput.grdlnput.Text) I sum(16)
frmlnput.grdlnput.Col = 2
Straight(16) = Right(16) + CSng(frmlnput.grdlnput.Text) I sum(16)
frmlnput.grdlnput.Col = 1
Leftt(16) = Straight(16) + CSng(frmlnput.grdlnput.Text) I sum(16)
'traffic from segment 13
sum(13) = 0
frmlnput.grdlnput.Row = 4
For i = 1To4

frmlnput.grdlnput.Col = i
sum(l3) = sum(13) + CSng(frmlnput.grdlnput.Text)

Nexti
frmlnput.grdlnput.Col = 3
Right(13) = CSng(frminput.grdlnput.Text) I sum(13)
frmlnput.grdlnput.Col = 2
Straight(13) = Right(13) + CSng(frmlnput.grdlnput.Text) I sum(l3)
frmlnput.grdlnput.Col = 1
Leftt(13) = Straight(13) + CSng(frminput.grdlnput.Text) I sum(l3)

Animation of Traffic Through Roundabouts - B-8

'entrance data
'the following code is trying to make the data more accurately reflect the input data ·
For i = 13 To 16

PutCarlnNow(i) = (sum(i) I 3600) * deltaT
'seconds per timestep * cars per hour I seconds per hour = cars per timestep

Nexti
End Sub
Public Sub FindDelayTime(i As Integer)
Dim ave As Single, t As Single, sum As Single
If (deltaT * TimeSteps) >= (60 * CSng(frmlnput.txtETime.Text)) Then

t = (TimeSteps * deltaT) - myCars(i).begintime
Select Case myCars(i).entrance

Case 14
frmDelayTime.grdDelays.Row = 1
Select Case myCars(i).exit

Case 18
frmDelayTime.grdDelays.Col = 4
sum= CSng(frmDelayTime.grdDelays.Text) *

counter(frmDelayTime.grdDelays.Row, frmDelayTime.grdDelays.Col)
sum= sum +t ·
counter(frmDelayTime.grdDelays.Row, frmDelayTime.grdDelays.Col) =

counter(frmDelayTime.grdDelays.Row, frmDelayTime.grdDelays.Col) + 1
ave= sum I counter(frmDelayTime.grdDelays.Row,

frmDelayTime.grdDelays.Col)
frmDelayTime.grdDelays.Text =Format(ave, "##.0")

Case 22
frmDelayTime.grdDelays.Col = 3
sum= CSng(frmDelayTime.grdDelays.Text) *

counter(frmDelayTime.grdDelays.Row, frmDelayTime.grdDelays.Col)
sum=sum+t
counter(frmDelayTime.grdDelays.Row, frmDelayTime.grdDelays.Col) =

counter(frmDelayTime.grdDelays.Row, frmDelayTime.grdDelays.Col) + 1
ave= sum I counter(frmDelayTime.grdDelays.Row,

frmDelayTime.grdDelays.Col)
frmDelayTime.grdDelays.Text =Format(ave, "##.0")

Case 20
frmDelayTime.grdDelays.Col = 2
sum= CSng(frmDelayTime.grdDelays.Text) *

counter(frmDelayTime.grdDelays.Row, frmDelayTime.grdDelays.Col)
sum=sum +t
counter(frmDelayTime.grdDelays.Row, frmDelayTime.grdDelays.Col) =

counter(frmDelayTime.grdDelays.Row, frmDelayTime.grdDelays.Col) + 1
ave = sum I counter(frmDelayTime.grdDelays.Row,

frmDelayTime.grdDelays.Col)
frmDelayTime.grdDelays.Text =Format(ave, "##.0")

Case 17
frmDelayTime.grdDelays.Col = 1
sum= CSng(frmDelayTime.grdDelays.Text) *

counter(frmDelayTime.grdDelays.Row, frmDelayTime.grdDelays.Col)
sum= sum+t
counter(frmDelayTime.grdDelays.Row, frmDelayTime.grdDelays.Col) =

counter(frmDelayTime.grdDelays.Row, frmDelayTime.grdDelays.Col) + 1
ave = sum I counter(frmDelayTime.grdDelays.Row,

frmDelayTime.grdDelays.Col)
frmDelayTime.grdDelays.Text =Format(ave, "##.0")

Animation of Traffic Through Roundabouts - B-9

End Select
Case 15

frmDelayTime.grdDelays.Row = 2
Select Case myCars(i).exit

Case 18
frmDelayTime.grdDelays.Col = 1
sum= CSng(frmDelayTime.grdDelays.Text) *

counter(frmDelayTime.grdDelays.Row, frmDelayTime.grdDelays.Col)
sum= sum+t
counter(frmDelayTime.grdDelays.Row, frmDelayTime.grdDelays.Col) =

counter(frmDelayTime.grdDelays.Row, frmDelayTime.grdDelays.Col) + 1
ave = sum I counter(frmDelayTime.grdDelays.Row,

frmDelayTime.grdDelays.Col)
frmDelayTime.grdDelays.Text =Format(ave, "##.0")

Case 19
frmDelayTime.grdDelays.Col = 4
sum= CSng(frmDelayTime.grdDelays.Text) *

counter(frmDelayTime.grdDelays.Row, frmDelayTime.grdDelays.Col)
sum=sum +t
counter(frmDelayTime.grdDelays.Row, frmDelayTime.grdDelays.Col) =

counter(frmDelayTime.grdDelays.Row, frmDelayTime.grdDelays.Col) + 1
ave = sum I counter(frmDelayTime.grdDelays.Row,

frmDelayTime.grdDelays.Col)
frmDelayTime.grdDelays.Text =Format(ave, "##.0")

Case 20
frmDelayTime.grdDelays.Col = 3
sum= CSng(frmDelayTime.grdDelays.Text) *

counter(frmDelayTime.grdDelays.Row, frmDelayTime.grdDelays.Col)
sum= sum +t ·
counter(frmDelayTime.grdDelays.Row, frmDelayTime.grdDelays.Col) =

counter(frmDelayTime.grdDelays.Row, frmDelayTime.grdDelays.Col) + 1
ave =sum I counter(frmDelayTime.grdDelays.Row,

frmDelayTime.grdDelays.Col)
frmDelayTime.grdDelays.Text =Format(ave, "##.0")

Case 17
frmDelayTime.grdDelays.Col = 2
sum= CSng(frmDelayTime.grdDelays.Text) *

counter(frmDelayTime.grdDelays.Row, frmDelayTime.grdDelays.Col)
sum=sum +t
counter(frmDelayTime.grdDelays.Row, frmDelayTime.grdDelays.Col) =

counter(frmDelayTime.grdDelays.Row, frmDelayTime.grdDelays.Col) + 1
ave= sum I counter(frmDelayTime.grdDelays.Row,

frmDelayTime.grdDelays.Col)
frmDelayTime.grdDelays.Text =Format(ave, "##.0")

End Select
Case 16

frmDelayTime.grdDelays.Row = 3
Select Case myCars(i).exit

Case 18
frmDelayTime.grdDelays.Col = 2
sum= CSng(frmDelayTime.grdDelays.Text) *

counter(frmDelayTime.grdDelays.Row, frmDelayTime.grdDelays.Col)
sum=sum+t
counter(frmDelayTime.grdDelays.Row, frmDelayTime.grdDelays. Col) =

counter(frmDelayTime.grdDelays.Row, frmDelayTime.grdDelays.Col) + 1

Animation of Traffic Through Roundabouts - B-10

ave= sum I counter(frmDelayTime.grdDelays.Row,
fnnDelayTime.grdDelays.Col)

frmDelayTime.grdDelays.Text = Format(ave, "##.0")
Case 19

fnnDelayTime.grdDelays.Col = 1
sum= CSng(frmDelayTime.grdDelays.Text) *

counter(frmDelayTime.grdDelays.Row, fnnDelayTime.grdDelays.Col)
sum=sum+t
counter(fnnDelayTime.grdDelays.Row, frmDelayTime.grdDelays.Col) =

counter(frmDelayTime.grdDelays.Row, frmDelayTime.grdDelays.Col) + 1
ave = sum I counter(frmDelayTime.grdDelays.Row,

frmDelayTime. grdDelays. Col)
fnnDelayTime.grdDelays.Text =Format(ave, "##.0")

Case 20
frmDelayTime.grdDelays.Col = 4
sum= CSng(frmDelayTime.grdDelays.Text) *

counter(frmDelayTime.grdDelays.Row, fnnDelayTime.grdDelays.Col)
sum=sum+t
counter(frmDelayTime.grdDelays.Row, frmDelayTime.grdDelays.Col) =

counter(frmDelayTime.grdDelays.Row, fnnDelayTime.grdDelays.Col) + 1
ave = sum I counter(frmDelayTime.grdDelays.Row,

frmDelayTime.grdDelays.Col)
frmDelayTime.grdDelays.Text =Format(ave, "##.0")

Case 21
frmDelayTime.grdDelays.Col = 3
sum= CSng(frmDelayTime.grdDelays.Text) *

counter(frmDelayTime.grdDelays.Row, frmDelayTime.grdDelays.Col)
sum=sum +t
counter(frmDelayTime.grdDelays.Row, frmDelayTime.grdDelays.Col) =

counter(frmDelayTime.grdDelays.Row, frmDelayTime.grdDelays.Col) + 1
ave = sum I counter(frmDelayTime.grdDelays.Row,

frmDelayTime.grdDelays.Col)
frmDelayTime.grdDelays.Text = Format(ave, "##.0")

End Select
Case 13

frmDelayTime.grdDelays.Row = 4
Select Case myCars(i).exit

Case 18
frmDelayTime.grdDelays.Col = 3
sum= CSng(frmDelayTime.grdDelays.Text) *

counter(frmDelayTime.grdDelays.Row, frmDelayTime.grdDelays.Col)
sum=sum+t

. counter(frmDelayTime.grdDelays.Row, frmDelayTime.grdDelays.Col) =
counter(frmDelayTime.grdDelays.Row, frmDelayTime.grdDelays.Col) + 1

ave = sum I counter(frmDelayTime.grdDelays.Row,
frmDelayTime.grdDelays. Col)

frmDelayTime.grdDelays.Text =Format(ave, "##.0")
Case 19

fnnDelayTime.grdDelays.Col = 2
sum= CSng(frmDelayTime.grdDelays.Text) *

counter(frmDelayTime.grdDelays.Row, fnnDelayTime.grdDelays.Col)
sum=sum +t
counter(fnnDelayTime.grdDelays.Row, frmDelayTime.grdDelays.Col) =

counter(frmDelayTime.grdDelays.Row, fnnDelayTime.grdDelays.Col) + 1

Animation of Traffic Through Roundabouts - B-11

ave= sum I counter(fnn.DelayTime.grdDelays.Row,
fnn.DelayTime.grdDelays.Col)

frrnDelayTime.grdDelays.Text =Format(ave, "##.0")
Case 20

frrnDelayTirne.grdDelays.Col = 1
sum= CSng(frrnDelayTime.grdDelays.Text) *

counter(fnn.DelayTime.grdDelays.Row, frrnDelayTime.grdDelays.Col)
sum= sum +t
counter(frrnDelayTime.grdDelays.Row, frrnDelayTime.grdDelays.Col) =

counter(frrnDelayTime.grdDelays.Row, frrnDelayTime.grdDelays.Col) + I
ave = sum I counter(fnn.DelayTime.grdDelays.Row,

frrnDelayTime.grdDelays.Col)
frrnDelayTime.grdDelays.Text =Format(ave, "##.0")

Case 17
frrnDelayTime.grdDelays.Col = 4
sum= CSng(frrnDelayTime.grdDelays.Text) *

counter(fnn.DelayTime.grdDelays.Row, frrnDelayTime.grdDelays.Col)
sum= sum +t
counter(fnn.DelayTime.grdDelays.Row, frrnDelayTime.grdDelays.Col) =

counter(fnn.DelayTime.grdDelays.Row, frrnDelayTime.grdDelays.Col) + 1
ave= sum I counter(frrnDelayTime.grdDelays.Row,

frrnDelayTime.grdDelays.Col) .
frrnDelayTime.grdDelays.Text =Format(ave, "##.0")

End Select
End Select

End If
End Sub
Public Sub CheckTirneO
If (deltaT * TimeSteps) >= (frrninput.txtRTirne.Text * 60) Then

Timer I.Enabled= False
cmdStop.Enabled = False
cmdRun.Enabled = True
frrn VPH.cmdVPH.Enabled = True

End If
End Sub

Public Sub SegSetupO
Dim i As Integer, j As Integer, numpoints As Integer
numSegs = 42
numpoints = 40
For i = 1 To numSegs

If cbxShowSegs. Value = 1 Then
pctPix.Line (myPts(mySegs(i).startPt).x, myPts(mySegs(i).startPt).y)­

(myPts(mySegs(i).endPt).x, myPts(mySegs(i).endPt).y), black 'draw lines
End If
With mySegs(i)

.length= ((myPts(mySegs(i).startPt).x - myPts(mySegs(i).endPt).x) "2 +
(myPts(mySegs(i).startPt).y - myPts(mySegs(i).endPt).y) "2) " 0.5

.slope= (myPts(mySegs(i).startPt).y - myPts(mySegs(i).endPt).y) I
(myPts(mySegs(i).startPt).x - myPts(mySegs(i).endPt).x)

End With
Nexti
If cbxShowSegs.Value = 1 Then

For i = 1 To numpoints
pctPix.Circle (myPts(i).x, myPts(i).y), 3

Animation of Traffic Through Roundabouts - B-12

Nexti
End If
For i = 1To12

j = i + 1: If i = 12 Then j = 1
mySegs(i).nextSegL = j

Nexti
mySegs(2).nextSegR = 18
mySegs(4).nextSegR = 19
mySegs(8).nextSegR = 20
mySegs(l O).nextSegR = 17
With mySegs(l3)

.nextSegL = 23

.nextSegR = 0

.leftSegs(l) = 0

.leftSegs(2) = 0
End With
With mySegs(l4)

.nextSegL = 25

.nextSegR = 22

.leftSegs(l) = 0

.leftSegs(2) = 0
End With
With mySegs(l 5)

.nextSegL = 27

.nextSegR = 0

.leftSegs(l) = 0

.leftSegs(2) = 0
End With
With mySegs(l 6)

.nextSegL = 29

.nextSegR = 21

.leftSegs(l) = 0

.leftSegs(2) = 0
End With
With mySegs(l 7)

.nextSegL = 3 7

.nextSegR = 0

.leftSegs(l) = 0

.leftSegs(2) = 0
End With
With mySegs(l 8)

.nextSegL = 38

.nextSegR = 0

.leftSegs(l) = 0

.leftSegs(2) = 0
End With
With mySegs(l 9)

.nextSegL = 41

.nextSegR = 0

.leftSegs(l) = 0

.leftSegs(2) = 0
End With
With mySegs(20)

.nextSegL = 42

.nextSegR = 0

Animation of Traffic Through Roundabouts - B-13

.leftSegs(l) = 0

.leftSegs(2) = 0
End With
With mySegs(21)

.nextSegL = 32

.nextSegR = 0

.leftSegs(l) = o

.leftSegs(2) = 0
End With
With mySegs(22)

.nextSegL = 35

.nextSegR = 0

.leftSegs(l) = 0

.leftSegs(2) = 0 r

End With
With mySegs(23)

.nextSegL = 24

.nextSegR = 0

.leftSegs(l) = 12

.leftSegs(2) = 11
End With
With mySegs(24)

.nextSegL = 1

.nextSegR = 0

.leftSegs(l) = 12

.leftSegs(2) = 11
End With
With mySegs(25)

.nextSegL = 26

.nextSegR = 0

.leftSegs(l) = 4

.leftSegs(2) = 3
End With
With mySegs(26)

.nextSegL = 5

.nextSegR = 0

.leftSegs(l) = 4

.leftSegs(2) = 3
End With
With mySegs(27)

.nextSegL = 28

.nextSegR = 0

.leftSegs(l) = 6

.leftSegs(2) = 5
End With
With mySegs(28)

.nextSegL = 7

.nextSegR = 0

.leftSegs(l) = 6

.leftSegs(2) = 5
End With
With mySegs(29)

.nextSegL = 30

.nextSegR = 0

.leftSegs(l) = 0

Animation of Traffic Through Roundabouts - B-14

.leftSegs(2) = 0
End With
With mySegs(30)

.nextSegL = 31

.nextSegR = 0

.leftSegs(l) = 10

.leftSegs(2) = 9
End With
With mySegs(31)

.nextSegL = 11

.nextSegR = 0

.leftSegs(l) = 10

.leftSegs(2) = 9
End With
With mySegs(32)

.nextSegL = 3 3

.nextSegR = 0

.leftSegs(l) = 0

.leftSegs(2) = 0
End With
With mySegs(33)

.nextSegL = 34

.nextSegR = 0

.leftSegs(l) = 3 7

.leftSegs(2) = 17
End With
With mySegs(34)

.nextSegL = 39

.nextSegR = 0

.leftSegs(l) = 37

.leftSegs(2) = 17
End With
With mySegs(35)

.nextSegL = 36

.nextSegR = 0

.leftSegs(l) = 19

.leftSegs(2) = 4
End With
With mySegs(36)

.nextSegL = 41

.nextSegR = 0

.leftSegs(l) = 19

.leftSegs(2) = 4
End With
With mySegs(3 7)

.nextSegL = 39

.nextSegR = 0

.leftSegs(l) = 0

.leftSegs(2) = 0
End With
With mySegs(38)

.nextSegL = 40

.nextSegR = 0

.leftSegs(l) = 0

.leftSegs(2) = 0

Animation of Traffic Through Roundabouts - B-15

End With
With mySegs(39)

.nextSegL = 0

.nextSegR = 0

.leftSegs(l) = 0

.leftSegs(2) = 0
End With
With mySegs(40)

.nextSegL = 0

.nextSegR = 0

.leftSegs(l) = 0

.leftSegs(2) = 0
End With
With mySegs(41)

.nextSegL = 0

.nextSegR = 0

.leftSegs(l) = 0

.leftSegs(2) = 0
End With
With mySegs(42)

.nextSegL = 0

.nextSegR = 0

.leftSegs(l) = 0

.leftSegs(2) = 0
End With
End Sub
Public Sub CarSetupO
Dim i As Integer
Fori = 1To100

With myCars(i)
.active= False
.length = 10# + 2 * Rnd
.color= RGB(255 * Rnd, 255 * Rnd, 255 * Rnd)
.speed = 25 + 20 * Rnd
.deSpeed = 15 + 20 * Rnd
.new=True
.width= 5 + Rnd

End With
Nexti
End Sub

Public Sub EnterNow(i As Integer)
Dim y As Single, j As Integer, segin As Integer, lastCar As Integer
segin = myCars(i).segment
lastCar = mySegs(segin).carsin(l)
'Find location of last car on segment
IflastCar = 0 Or myCars(lastCar).location >= (30.7 I mySegs(segin).length) Then

myCars(i).active = True
myCars(i).location = 0.1
FindExit (i)
FindNextSegment (i)
For j = 19 To 2 Step -1

mySegs(segin).carsinG) = mySegs(segin).carslnG - 1)
Nextj
mySegs(segin).carsin(l) = i

Animation of Traffic Through Roundabouts - B-16

mySegs(segin).totCars = mySegs(segin).totCars + 1
UpdateOutput (i)
AdjustSpeeds (i)
AdjustSpeeds (i)
myCars(i).begintime = deltaT * TimeSteps
myCars(i).entrance = segin

End If
End Sub

Public Sub DrawCars()
Dim begx As Single, begy As Single, endx As Single, endy As Single
Dim i As Integer, newx As Single, newy As Single
Dim seg As Integer, CarAngle As SingleFor i = 1 To numCars

If myCars(i).active = True Then
seg = myCars(i).segment
begx = myPts(mySegs(seg).startPt).x
begy = myPts(mySegs(seg).startPt).y
endx = myPts(mySegs(seg).endPt).x
endy = myPts(mySegs(seg).endPt).y
newx = begx + (endx - begx) * myCars(i).location
newy = begy + (endy - begy) * myCars(i).location
CarAngle = Atn(mySegs(seg).slope)
carFront.x = newx + (myCars(i).length I 2) * Cos(CarAngle)
carFront.y = newy + (myCars(i).length I 2) * Sin(CarAngle)
carBack.x = newx - (myCars(i).length I 2) * Cos(CarAngle)
carBack.y = newy - (myCars(i).length I 2) * Sin(CarAngle)
pctPix.DrawWidth = myCars(i).width
If myCars(i).new = False Then

pctPix.Line (oldFront(i).x, oldFront(i).y)-(oldBack(i).x, oldBack(i).y),
myCars(i).color 'Erase old cars

Else
myCars(i).new = False

End If
pctPix.Line (carFront.x, carFront.y)-(carBack.x, carBack.y), myCars(i).color 'Draw

new ones
oldFront(i).x = carFront.x 'remember location to erase on next time step
oldFront(i).y = carFront.y
oldBack(i).x = carBack.x
oldBack(i).y = carBack.y

End If
Nexti
End Sub

Public Sub SwitchSegments()
Dim i As Integer, j As Integer, segLength As Single
Dim thisSegg As Integer, nextSegg As Integer
For i = 1 To numCars
If myCars(i).active = True Then

'move car -- distance = rate * time
AdjustSpeeds (i)
thisSegg = myCars(i).segment
nextSegg = myCars(i).nextseg
segLength = mySegs(thisSegg).length
myCars(i).location = myCars(i).location + myCars(i).speed * deltaT I segLength
If myCars(i).location > 1 Then ' exit or move car into the next segment

Animation of Traffic Through Roundabouts - B-17

mySegs(thisSegg).carsin(mySegs(thisSegg). totCars) = 0
mySegs(thisSegg).totCars = mySegs(thisSegg).totCars - 1
If nextSegg <> -1 Then

mySegs(nextSegg).totCars = mySegs(nextSegg).totCars + 1
For j = 19 To 2 Step -1

mySegs(nextSegg).carsinG) = mySegs(nextSegg).carsinG - 1)
Next j 'make space in carsin of the next segment for the car
mySegs(nextSegg).carsin(l) = i 'shift current car into nextSegg
myCars(i).segment = myCars(i).nextseg
FindNextSegment (i) 'i is the index of the current car
'set location in next segment
myCars(i).location = (myCars(i).location - 1 #) * mySegs(thisSegg).length I

mySegs(nextSegg).length
Else

myCars(i).active = False 'turn car off.
myCars(i).new = True
pctPix.FillColor = myCars(i).color 'set car color
pctPix.DrawWidth = myCars(i).width
pctPix.Line (oldFront(i).x, oldFront(i).y)-(oldBack(i).x, oldBack(i).y),

myCars(i).color 'erase for last time
FindDelayTime (i)

End If
End If

End If
Nexti
End Sub
Public Sub FindFrontCar(i As Integer)
backcar = i ·
thisseg = myCars(backcar).segment
nextseg = myCars(backcar).nextseg
gap= (1 - myCars(backcar).location) * mySegs(thisseg).length
Do

frontcar = mySegs(nextseg).carsin(l)
If frontcar <> 0 Then

gap= gap+ myCars(frontcar).location * mySegs(nextseg).length
Exit Do

Else
gap = gap + mySegs(nextseg).length

End If
thisseg = nextseg
If mySegs(thisseg).nextSegR = 0 Then

nextseg = mySegs(thisseg).nextSegL
Elself myCars(backcar).exit = mySegs(thisseg).nextSegR Then

nextseg = mySegs(thisseg).nextSegR
Else

nextseg = mySegs(thisseg).nextSegL
End If
If nextseg = 0 Then gap = allowed Gap + gap

Loop Until gap >= allowedGap Or thisseg >= 39
End Sub
Public Sub PointSetup()
Dim i As Integer
i = 0
Open "c:\stuff\gorham circle\point.txt" For Input As #1
Do While Not EOF(l)

Animation of Traffic Through Roundabouts - B-18

i = i + 1
Input #1, myPts(i).x, myPts(i).y

Loop
Close #1
End Sub

Public Sub EndPointSetup()
Dim i As Integer, j As Integer
Fori = 1To12

j = i + 1: If i = 12 Then j = 1
mySegs(i).startPt = i
mySegs(i).endPt = j

Nexti
With mySegs(13)

.startPt = 25

.endPt = 24
End With
With mySegs(14)

.startPt = 14

.endPt= 13
End With
With mySegs(l 5)

.startPt = 23

.endPt = 22
End With
With mySegs(16)

.startPt = 34

.endPt= 33
End With
With mySegs(l 7)

.startPt = 11

.endPt= 35
End With
With mySegs(l 8)

.startPt = 3

.endPt= 28
End With
With mySegs(l 9)

.startPt = 5

.endPt= 17
End With
With mySegs(20}

.startPt = 9

.endPt= 26
End With
With mySegs(21)

.startPt = 3 3

.endPt = 38
End With
With mySegs(22)

.startPt = 13

.endPt = 15
End With
With mySegs(23)

.startPt = 24

Animation of Traffic Through Roundabouts - B-19

.endPt= 20
End With
With mySegs(24)

.startPt = 20

.endPt = 1
End With
With mySegs(25)

.startPt = 13

.endPt= 19
End With
With mySegs(26)

.startPt = 19

.endPt= 5
End With
With mySegs(27)

.startPt = 22

.endPt= 21
End With
With mySegs(28)

.startPt = 21

.endPt= 7
End With
With mySegs(29)

.startPt = 33

.endPt= 32
End With
With mySegs(30)

.startPt = 32

.endPt= 31
End With
With mySegs(31)

.startPt = 31

.endPt = 11
End With
With mySegs(32)

.startPt = 3 8

.endPt= 39
End With
With mySegs(33)

.startPt = 39

.endPt=40
End With
With mySegs(34)

.startPt = 40

.endPt= 36
End With
With mySegs(35)

.startPt = 15

.endPt = 16
End With
With mySegs(36)

.startPt = 16

.endPt= 17
End With
With mySegs(37)

Animation of Traffic Through Roundabouts - B-20

.startPt = 3 5

.endPt= 36
End With
With mySegs(38)

.startPt = 28

.endPt=29
End With
With mySegs(39)

.startPt = 36

.endPt = 37
End With
With mySegs(40)

.startPt = 29

.endPt = 30
End With
With mySegs(41)

.startPt = 17

.endPt = 18
End With
With mySegs(42)

.startPt = 26

.endPt = 27
End With
End Sub

Public Sub CheckProbability(i As Integer, j As Integer)
Dim x As Single
x = Rnd 'randomly decide when to enter
If x <= PutCarinNowG) Then 'it's time to put a car in

myCars(i).segment = j
EnterNow (i)

End If
End Sub
Private Sub cmdOK_ClickO
frminput.Hide
End Sub
Private Sub cmdUpdate _ ClickO
grdinput.Row = Cint(txtRow.Text)
grdinput.Col = Cint(txtCol.Text)
grdinput. Text = txtData. Text
End Sub

frminput
Private Sub Form_LoadO
Dim i As Integer, x As Integer
grdinput.Row = 0
grdinput.Col = 1
grdinput.Text ="Left"
grdlnput.Col = 2
grdlnput.Text = "Straight"
grdlnput.Col = 3
grdlnput.Text ="Right"
grdlnput.Col = 4
grdlnput.Text = "U-tum"
grdlnput.Col = 0

Animation of Traffic Through Roundabouts - B-21

grdinput.ColWidth(O) = grdinput.ColWidth(O) * I.I
grdinput.Row = I
grdinput.Text ="South Bound" 'segment I4
grdinput.Row = 2
grdinput.Text ="East Bound" 'segment 15
grdinput.Row = 3
grdinput.Text ="North Bound" 'segment 16
grdinput.Row = 4
grdlnput.Text ="West Bound" 'segment 13
Fori =I To 4

grdinput.Row = i
-Forx= 1To4
grdinput.Col = x
Ifx=4 Then

grdinput. Text = 0
Else

grdinput. Text = 60
End If
Nextx

Nexti
End Sub

FrmVPH
Private Sub cmdhide _ ClickO
frm VPH.Hide
End Sub

Private Sub cmdVPH _ ClickO
Dim i As Integer, j As Integer
LabellO.Caption ="Vehicles per Hour"
For i = 1To4

grdVPH.Row = i
Forj =I To 5

grdVPH.Col = j
Ifi = 5 Andj = 5 Then Exit For
grdVPH.Text = Format((CSng(grdVPH.Text) * 60) I (CSng(frminput.txtRTime.Text)

- CSng(frminput.txtETime.Text)), "###.0")
Nextj

Nexti
cmdVPH.Enabled = False
End Sub

Private Sub Form_LoadO
Dim i As Integer, x As Integer
grdVPH.Row = 0
grdVPH.Col = I
grdVPH.Text ="Left"
grdVPH.Col = 2
grdVPH.Text ="Straight"
grdVPH.Col = 3
grdVPH.Text ="Right"
grdVPH.Col = 4
grdVPH.Text = "U-turn"
grdVPH.Col = grdVPH.Col + 1
grdVPH.Text = "Entr. Sum"

Animation of Traffic Through Roundabouts-B-22

grdVPH.Col = 0
grdVPH.ColWidth(O) = grdVPH.ColWidth(O) * I. I
grdVPH.Row = I
grdVPH.Text ="South Bound" 'segment I4
grdVPH.Row = 2
grdVPH.Text ="East Bound" 'segment I5
grdVPH.Row = 3
grdVPH.Text ="North Bound" 'segment I6
grdVPH.Row = 4
grdVPH.Text = "West Bound" 'segment 13
For i =I To 4

fnn VPH.grdVPH.Row = i
Forj =I To 5

fnn VPH.grdVPH.Col = j
fnnVPH.grdVPH.Text = CStr(O)

Nextj
Nexti
End Sub

fnnDelayTime
Private Sub cmdhide _ ClickO
fnnDelayTime.Hide
End Sub
Private Sub Form_LoadO
Dim i As Integer, j As Integer
grdDelays.Row = 0
grdDelays.Col =I
grdDelays.Text ="Left"
grdDelays.Col = 2
grdDelays.Text ="Straight"
grdDelays.Col = 3
grdDelays.Text ="Right"
grdDelays.Col = 4
grdDelays.Text = "U-turn"
grdDelays.Col = 0
grdDelays.ColWidth(O) = grdDelays.ColWidth(O) * I. I
grdDelays.Row = I
grdDelays.Text ="South Bound" 'segment I4
grdDelays.Row = 2
grdDelays.Text ="East Bound" 'segment I5
grdDelays.Row = 3
grdDelays.Text ="North Bound" 'segment I6
grdDelays.Row = 4
grdDelays.Text ="West Bound" 'segment 13
Fori= I To4

grdDelays.Row = i
Forj =I To 4

grdDelays.Col = j
grdDelays.Text = CStr(O)

Nextj
Nexti
End Sub

Animation of Traffic Through Roundabouts - B-23

